

9550 Series

Digital Delay Pulse Generator

The 9550 series pulse generator was designed to meet the demand for laboratories and users who require additional channels.

Simple programming, high functionality, and easy memory recall

This rack-mount unit is available in a 1U or 2U 19" form factor, depending on the number of channels.

The standard configuration features a timing resolution of 250 ps and low jitter of less than 50 ps.

Specifications

- Dimensions:
 - 1U 19" x 10" x 1.75" 6/12 independent channels
 - 2 U 19" x 10" x 3.50" 24/36 independent channels
- Weight: 8 lbs to 12 lbs
- Power: IEC Power Cord
 - Voltage: 100 to 240 VAC
 - Current: 3A
- Memory: 6 to 36 user storage bins, varies by unit
- Rate: 20 MHz
- Resolution: 250 ps
- Jitter: <50 ps
- Communication: USB, RS232, Ethernet
- Inputs: 3 selectable Trigger/Gate Inputs

Service Features

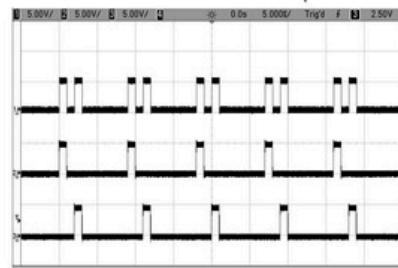
Our industry-leading lab instruments come with full support and service.

- Full 2-Year Warranty
- Integration Assistance, Full Customer Support
- Rental Instruments Available
- 30-Day Demo Period

Channel Timing Generator		Internal Rate Generator	
Pulse Width Range	10 ns - 1000 s	Rate (T0 period)	0.0002 Hz to 20 MHz
Width Accuracy	1 ns + [0.0001 x (width+delay)]	Resolution	5 ns
Width Resolution	250 ps	Accuracy	1 ns + (0.0001 x Period)
Pulse Delay Range	10 ns to 2000 s	T0 Period Jitter (RMS)	< 50 ps
Delay Accuracy	1 ns + (0.0001 x delay)	Timebase	200 MHz, low jitter PLL
Delay Resolution	250 ps	Oscillator	50 MHz, 25 ppm crystal oscillator
Jitter (Channel to Channel RMS)	< 50 ps	System Output Modes	Single, continuous, burst, duty cycle, external gate/trigger
Channel Modes	Single shot, normal, burst, duty cycle	Burst Mode	1 to 4,000,000 pulses
Control Modes	Internally triggered or externally gated. Each channel may be independently set.	Duty Cycle Mode	1 to 4,000,000 pulses
		Pulse Control Modes	Internal rate generator, external trigger/gate

Trigger / Gate		Output Module	
Trigger Edge	Rising/Falling	TTL/CMOS Mode	
Threshold	0.2 to 15 V	Output Impedance	50 Ohms
Max Input Voltage	30 V	Output Level	4.0 VDC into ≥ 1 k ohm
Resolution	10 mV	Rise Time (10%-90%)	< 3ns typical into ≥ 1 k ohm
Trigger Rate	DC to 5 MHz	Output Current	5 mA typical into 1 k ohm 50 mA typical into 50 ohm
Trigger Input Jitter (RMS)	800 ps	Adjustable Mode	
Trigger Input Insertion Delay	160 ns	Output Level	2.0 to 20 VDC into ≥ 1 k ohm, 1.0 to 10 VDC into ≥ 50 ohms
Trigger Input Minimum Pulse Width	20 ns	Resolution	10 mV
Gate Pulse Inhibit Delay	160 ns	Output Current	200 mA typical, 400 mA (short pulses)
Gate Output Inhibit Delay	160 ns	Rise Time (10%-90%)	15 ns typical @ 20 V (High Imp) 25 ns typical @ 10 V (50 ohm)
		Overshoot	< 100 mV + 10% of pulse amplitude

Multiplexing

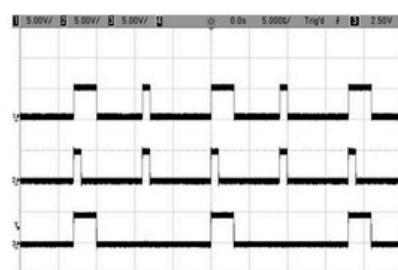

Utilizing the MUX function with channel modes enables various complex functions, including double pulsing and modulating pulse widths, as demonstrated in the following examples:

Ex. 1: Double Pulse – A double pulse waveform can be generated, as shown in the figure, by using the MUX function to combine two channels.

Scope Ch 1: Channel 1 output after combining channel 1 and channel 3 (mux code: 3).

Scope Ch 2: Channel 1 output before combining channel 3 (mux code: 1).

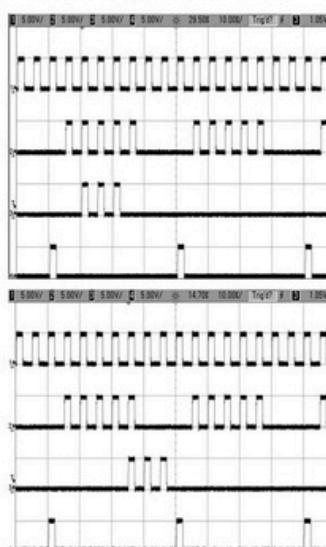
Scope Ch 3: Channel 3 output delayed as necessary to generate the required second pulse (mux code: 1).

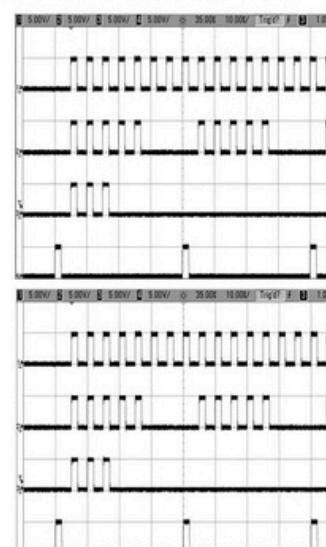


Ex. 2: Alternating Pulsewidth – An extended pulse can be generated every other pulse, as shown in the figure, by using the MUX function to combine two channels.

Scope Ch 1: Channel 2 output after combining channel 2 and channel 4 (mux code: 3).

Scope Ch 2: Channel 2 output before combining channel 4 (mux code: 1).

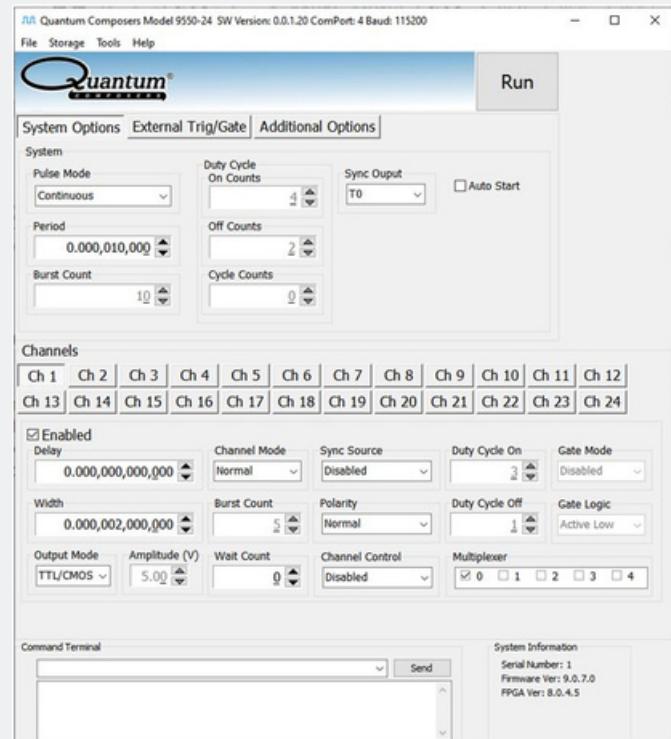

Scope Ch 3: Channel 4 output extended as necessary to generate the required second pulse (mux code: 1). The channel is in duty cycle mode (1 on, 1 Off) to generate the alternating pattern.


Channel Sync Function	6 / 12	24	36	12	24	36	6 / 12	24	36
MODEL #	SYNC-A			SYNC-B			SYNC-T		
6 / 12 Channel Units	6			12					
24 Channel Units		6		12	24				
36 Channel Units			6	12	24	36			

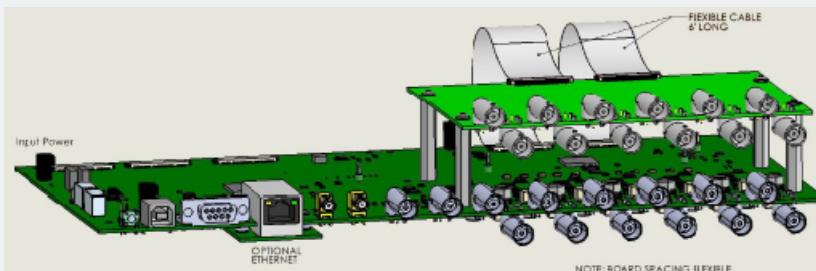
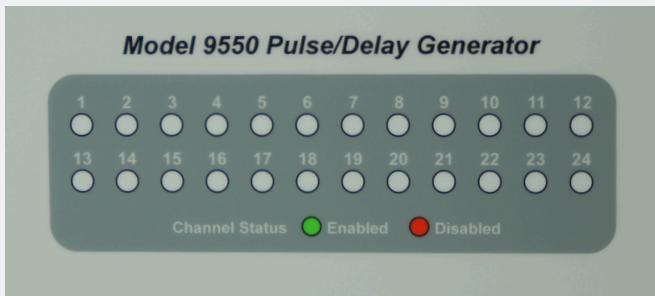
Command: `:PULSEn:SYNC SYNC | SYNCB | SYNCT`

Column 1 – Sync Mode Disabled

Column 2 – Sync Mode Enabled


Scope Ch1 – channel 1 - normal mode, wait = 1

Scope Ch2 – channel 2 - duty cycle mode (5 on, 3 off), wait = 1



Scope Ch3 – channel 3 - burst mode (3 pulses), wait = 0

Scope Ch4 – channel 6 - (sync pulse) duty cycle mode (1 on, 7 off), wait = 0.

Software included

Model 9550 Pulse/Delay Generator

Board Level Available

Rear view of 9550-24

Your contact:

Schulz-Electronic GmbH
Dr-Rudolf-Eberle-Straße 2
D-76534 Baden-Baden
Fon + 49.7223.9636.0

vertrieb@schulz-electronic.de
www.schulz-electronic.de

